Reg. No. \square
MTS 455
II Semester M.Sc. Degree Examination, September/October 2022
(CBCS - New Syllabus)
MATHEMATICS
Linear Algebra - II
Time : 3 Hours
Max. Marks : 70
Note : 1) Answer any five full questions.
2) Answer to each full question shall not exceed eight pages of the answer book. No additional sheets will be provided for answering.
3) Use of scientific calculator is permitted.

1. a) Define a bilinear form. For $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ in the vector space \mathbb{R}^{2}, define $B(x, y)=x_{1} y_{2}-x_{2} y_{1}$. Is B a bilinear form ? Justify.
b) Define the matrix of a bilinear form. If A and A^{\prime} are two matrices of a bilinear form with respect to two bases B and B^{\prime}, then derive the relation between A and A^{\prime} in terms of the matrix of change of basis.
c) Prove that the bilinear form represented by the matrix $\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$ is positive definite if and only if $\mathrm{a}>0$ and $\mathrm{ad}-\mathrm{b}^{2}>0$.
2. a) Prove that the following statements are equivalent for an $n \times n$ real matrix :
i) A is symmetric and positive definite.
ii) The form $X^{t} A Y$ represents dot product, w.r.t. some basis of \mathbb{R}^{n}.
iii) $A=P^{t} P$ for some $P \in G L_{n}(\mathbb{R})$.
b) Prove that the eigen values of a Hermitian matrix are real numbers.
c) If a Hermitian form on V is not identically zero, then show that there is a vector $v \in \mathrm{~V}$ such that $\langle\mathrm{v}, \mathrm{v}\rangle \neq 0$.
3. a) Prove the existence of an orthonormal basis in a finite dimensional vector space V with a positive definite Hermitian form.
b) Let \langle,$\rangle be a symmetric form on a real vector space \mathrm{V}$ and let W be a subspace of V on which \langle,$\rangle is non-degenerate. If \left(w_{1}, w_{2}, \ldots, w_{n}\right)$ is a basis for W , then obtain the projection formula for V onto W .
c) Let $W=$ span $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$ in \mathbb{R}^{3}. Determine the orthogonal projection of $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ onto W.
4. a) Define a Unitary operator on a Hermitian space V. Show that $T: V \rightarrow V$ is unitary if and only if $\langle\mathrm{Tv}, \mathrm{Tw}\rangle=\langle\mathrm{v}, \mathrm{w}\rangle \forall \mathrm{v}, \mathrm{w} \in \mathrm{V}$.
b) State and prove Spectral theorem for normal operators.
5. a) Let $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ be a surjective homomorphism of R -modules, with kernel W . Show that there is a one to one correspondence between submodules of V^{\prime} and submodules of V containing W .
b) Define a finitely generated module and a free module. Are all finitely generated modules free? Justify.
6. a) Let R be a non-zero ring. Prove that any two bases of the same free module over R have the same cardinality.
b) Show that any subgroup of a free abelian group is free.
7. a) Let V be an R -module. Prove that every submodule of V is finitely generated if and only if submodules of V satisfies ascending condition in the inclusion order.
b) Let $\phi: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ be a homomorphism of R -modules. If the kernel and image of ϕ are finitely generated, then show that V is finitely generated.
8. a) State and prove Hilbert basis theorem.
b) Find matrix P such that $P^{-1} A P$ is a diagonal matrix, where

$$
A=\left[\begin{array}{cc}
t^{2}-3 t+1 & t-2 \tag{10+4}\\
(t-1)^{3} & t^{2}-3 t+2
\end{array}\right]
$$

