Reg. No. \square

II Semester M.Sc. Degree Examination, September/October 2022 MATHEMATICS Ordinary Differential Equations (CBCS - New Syllabus)

Time : 3 Hours
Max. Marks : 70
Note: 1) Answer any five full questions.
2) No additional sheets will be provided for answering.
3) Use of scientific calculator is permitted.

1. a) If ϕ is any solution of $L_{n}(y)=y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n} y=0$ on an interval I containing a point x_{0}, then prove that $\forall \mathrm{x}$ in $\mathrm{I}, \mathrm{e}^{-k \mid x-\mathrm{x}_{0}}\| \| \phi\left(\mathrm{x}_{0}\right)\|\leq\| \phi(\mathrm{x})\|\leq\| \phi\left(\mathrm{x}_{0}\right) \|$ $e^{k \mid x-x_{0}}$ where, $\| \phi(x)| |=\left[|\phi(x)|^{2}+\left|\phi^{1}(x)\right|^{2}+\ldots . .+\left|\phi^{n-1}(x)\right|^{2}\right]^{1 / 2}$ and $K=1+\left|a_{1}\right|+\left|a_{2}\right|$ $+\ldots . .+\left|a_{n}\right|$.
b) Let $\phi_{1}(\mathrm{x})$ and $\phi_{2}(\mathrm{x})$ be linearly independent solutions of $\mathrm{L}_{2}(\mathrm{y})=0$ on an interval I. Then prove that every solution of $L_{2}(y)=0$ can be expressed uniquely as $\phi(x)=c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)$, where c_{1} and c_{2} are constants.
c) Let $\alpha_{1}, \alpha_{2}, \ldots \ldots \alpha_{n}$ be any n constants and let x_{0} be any real number. Prove that on any interval I containing x_{0} there exists at most one solution ϕ of $\mathrm{L}_{\mathrm{n}}(\mathrm{y})=0$ satisfying $\phi\left(\mathrm{x}_{0}\right)=\alpha_{1}, \phi^{1}\left(\mathrm{x}_{0}\right)=\alpha_{2}, \ldots . . \phi^{(n-1)}\left(\mathrm{x}_{0}\right)=\alpha_{\mathrm{n}}$.
2. a) Compute the Wronskian of $y^{\prime \prime \prime}-4 y^{\prime}=0$. Verify that they are linearly independent.
b) Use method of variation of parameters to find a particular solution of the equation
i) $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6 x^{4}$
ii) $y^{\prime \prime}+y=\sec x$.
c) Find the solution ϕ of the initial-value problem
$y^{\prime \prime \prime}+\mathrm{y}=0, \mathrm{y}(0)=0, \mathrm{y}^{\prime}(0)=1, \mathrm{y}^{\prime \prime}(0)=0$.
3. a) Solve the following equation by the method of undetermined coefficients:
i) $y^{\prime \prime}-2 y^{\prime}+y=2 e^{x}+2 x$
ii) $y^{\prime \prime}+y=x e^{x} \cos 2 x$.
b) If ϕ_{1} is a solution of $a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0$, on an interval I and $\phi_{1}(x) \neq 0 \forall x \in I$, then show that $\phi_{2}(x)=\phi_{1}(x) \int_{x_{0}}^{x} \frac{1}{\left[\phi_{1}(s)\right]^{2}} \operatorname{Exp}\left[\int_{x_{0}}^{s} \frac{-a_{1}(\xi)}{a_{0}(\xi)} d \xi\right] d s$ is
another solution.

MTS 456

4. a) Find the power series solution of $y^{\prime \prime}+3 x y^{\prime}+3 y=0, y(0)=2, y^{\prime}(0)=3$.
b) Prove the following recurrence relations:
i) $(2 n+1) x P_{n}=(n+1) P_{n+1}+n P_{n-1}$
ii) $n P_{n}=x P_{n}^{\prime}-P_{n-1}^{\prime}$
where $P_{n}(x)$ is the Legendre polynomial.
5. a) Show that $\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\left\{\begin{array}{cl}0, & m \neq n \\ \frac{2}{2 m+1}, & m=n\end{array}\right.$ Legendre polynomials. \quad where $P_{n}(x)$ represents the
b) Obtain the general solution of $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-x y=0$ about regular singular point $\mathrm{x}=0$.
6. a) Using Frobenius method, find the series solution of $2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0$ near the singular point $x=0$.
b) Prove that $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$.
7. a) State and prove existence and uniqueness theorem for the solution of the initial value problem $\mathrm{y}^{\prime}=\mathrm{A}(\mathrm{x}) \mathrm{y}, \mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$.
b) Solve the system of equations $\binom{y_{1}^{1}}{y_{2}^{1}}=\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)\binom{y_{1}}{y_{2}}$.
8. a) Let f be a continuous real valued function on the rectangle
$R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b,(a, b>0)$ and let $|f(x, y)| \leq M$ for all (x, y) in R. Further suppose that f satisfies a Lipschitz condition with constant K in R. Then prove that the successive approximations $\phi_{0}(x)=y_{0}, \phi_{k+1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(t, \phi_{k}(t)\right) d t, k=0,1,2, \ldots .$.
converges on the interval $I:\left|x-x_{0}\right| \leq \alpha=\min \left\{a, \frac{b}{M}\right\}$ to a solution ϕ of the IVP $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ on I.
b) Apply Picards method to solve the IVP upto $3^{\text {rd }}$ approximation $\frac{d y}{d x}=x+y^{2}$ given that $\mathrm{y}=0$ at $\mathrm{x}=0$.
