Reg. No. \square
MTS 557

IV Semester M.Sc. Degree Examination, September/October 2022 MATHEMATICS
 Algebraic Number Theory
 (CBCS - New Syllabus)

Time : 3 Hours
Max. Marks : 70

Note : 1) Answer any five full questions.

2) Answer to each full question shall not exceed eight pages of the answer book. No additional sheets will be provided for answering.
3) Use of scientific calculator is permitted.
1. a) State and prove Liouville's theorem for a real algebraic number of degree more than 1.
b) Define the notions of trace and norm of an element in algebraic number field K . If K is an algebraic number field of degree n over \mathbb{Q}, then show that for any, $\alpha \in K, \operatorname{Tr}_{k}(\alpha)=\sigma_{1}(\alpha)+\sigma_{2}(\alpha)+\ldots+\sigma_{n}(\alpha)$, and $N_{k}(\alpha)=\sigma_{1}(\alpha) \sigma_{2}(\alpha) \ldots \sigma_{n}(\alpha)$, where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\mathrm{n}}$ are the n distinct \mathbb{Q}-isomorphisms of K into \mathbb{C}. Deduce that for any algebraic integer $\alpha, \operatorname{Tr}_{K}(\alpha)$ and $N_{K}(\alpha)$ are integers.
c) If $\xi=e^{\frac{2 \pi i}{7}}$ and $K=\mathbb{Q}(\xi)$, then find $T_{K / \mathbb{Q}}\left(\xi+\xi^{2}+\xi^{3}\right)$.
2. a) Find the units in the ring of algebraic integers θ_{K}, where $K=\mathbb{Q}(\sqrt{d})$ and d is a negative square free integer.
b) Prove that every algebraic number field has an integral basis.
c) Determine the discriminant of $K=\mathbb{Q}(\sqrt{d})$, where d is a square-free integer.
3. a) Prove that factorization into irreducibles is not unique in the ring of integers of $\mathbb{Q}(\sqrt{-5})$.
b) Show that $\mathrm{K}=\mathbb{Q}(\sqrt{\mathrm{d}})$ is norm-Euclidean for $\mathrm{d}=-1,-2,-3,-7$ and -11 .
c) Show that $x^{2}+5=y^{3}$ has no integer solution.
4. Let K be an algebraic number field and let Q_{K} be its ring of integers.
a) If norm of an element x in θ_{K} is a rational prime, prove that x is irreducible in θ_{k}.
b) Prove that Q_{K} is a Dedekind domain.
5. a) Let Q_{K} be the ring of integers of an algebraic number field K. Let P be a non-zero prime ideal of Q_{K} and let P^{-1} denotes the set $\left\{\alpha \in \mathrm{K}: \alpha \mathrm{P} \subseteq Q_{K}\right\}$. Show that P^{-1} is a fractional ideal of $\theta_{\mathrm{K}}, Q_{\mathrm{K}} \subseteq \mathrm{P}^{-1}$ and $\mathrm{PP}^{-1}=\theta_{\mathrm{K}}$.
b) Find the inverse of ideal $\langle 2, \sqrt{6}\rangle$ in $D=\mathbb{Z}+\mathbb{Z} \sqrt{6}$.
6. a) If I and J are ideals of a Dedekind domain R, prove that I divides J if and only if $J \subseteq I$. Hence deduce that if P is prime ideal and $P \mid I J$, then $P \mid I$ or $P \mid J$.
b) Prove or disprove the following :
i) Every unique factorization domain is integrally closed.
ii) Every principal ideal domain is a Dedekind domain.
iii) Every Dedekind domain is a principal ideal domain.
c) Find the prime factorization of the ideal $68 \mathbb{Z}$ in the ring \mathbb{Z}.
7. a) Let K be an algebraic number field and let Q_{K} be its ring of integers. Prove that any non-zero proper ideal of Q_{k} has finitely many divisors.
b) Let K be an algebraic number field of degree n. If a rational prime p ramifies in K, then prove that p divides d_{k}, the discriminant of K.
c) Let $K=\mathbb{Q}(\theta)$, where θ is a root of the polynomial $x^{3}-18 x-6$. Find out how the rational primes $2,3,5$ and 11 split in K .
8. a) Define the class-group and the class-number of an algebraic number field K . Prove that Q_{K}, the ring of integers of K is unique factorization domain if and only if the class-number is 1 .
b) Determine the class number of $K=\mathbb{Q}(\sqrt{-19})$.
