

MTS 557

Max. Marks: 70

IV Semester M.Sc. Degree Examination, September/October 2022 MATHEMATICS Algebraic Number Theory (CBCS – New Syllabus)

Time : 3 Hours

Note : 1) Answer any five full questions.

- 2) Answer to **each full** question shall **not** exceed **eight** pages of the answer book. **No** additional sheets will be **provided** for answering.
- 3) Use of scientific calculator is permitted.
- 1. a) State and prove Liouville's theorem for a real algebraic number of degree more than 1.
 - b) Define the notions of trace and norm of an element in algebraic number field K. If K is an algebraic number field of degree n over \mathbb{Q} , then show that for any, $\alpha \in K$, $Tr_{\kappa}(\alpha) = \sigma_1(\alpha) + \sigma_2(\alpha) + \ldots + \sigma_n(\alpha)$, and $N_{\kappa}(\alpha) = \sigma_1(\alpha) \sigma_2(\alpha) \ldots \sigma_n(\alpha)$, where $\sigma_1, \sigma_2, \ldots, \sigma_n$ are the n distinct \mathbb{Q} -isomorphisms of K into \mathbb{C} . Deduce that for any algebraic integer α , $Tr_{\kappa}(\alpha)$ and $N_{\kappa}(\alpha)$ are integers.

c) If
$$\xi = e^{\frac{2\pi i}{7}}$$
 and $K = \mathbb{Q}(\xi)$, then find $T_{K/\mathbb{Q}}(\xi + \xi^2 + \xi^3)$. (5+7+2)

- 2. a) Find the units in the ring of algebraic integers \mathcal{O}_{κ} , where $K = \mathbb{Q}(\sqrt{d})$ and d is a negative square free integer.
 - b) Prove that every algebraic number field has an integral basis.
 - c) Determine the discriminant of $K = \mathbb{Q}(\sqrt{d})$, where d is a square-free integer. (6+5+3)
- 3. a) Prove that factorization into irreducibles is not unique in the ring of integers of $\mathbb{Q}(\sqrt{-5})$.
 - b) Show that $K = \mathbb{Q}(\sqrt{d})$ is norm-Euclidean for d = -1, -2, -3, -7 and -11.
 - c) Show that $x^2 + 5 = y^3$ has no integer solution. (5+5+4)

P.T.O.

MTS 557

- 4. Let K be an algebraic number field and let \mathcal{O}_{K} be its ring of integers.
 - a) If norm of an element x in \mathcal{O}_{κ} is a rational prime, prove that x is irreducible in \mathcal{O}_{κ} .
 - b) Prove that \mathcal{O}_{κ} is a Dedekind domain.
- 5. a) Let \mathcal{O}_{κ} be the ring of integers of an algebraic number field K. Let P be a non-zero prime ideal of \mathcal{O}_{κ} and let P⁻¹ denotes the set $\{\alpha \in K : \alpha P \subseteq \mathcal{O}_{K}\}$. Show that P⁻¹ is a fractional ideal of \mathcal{O}_{κ} , $\mathcal{O}_{\kappa} \subseteq P^{-1}$ and PP⁻¹ = \mathcal{O}_{κ} .
 - b) Find the inverse of ideal $\langle 2, \sqrt{6} \rangle$ in $D = \mathbb{Z} + \mathbb{Z}\sqrt{6}$. (10+4)
- 6. a) If I and J are ideals of a Dedekind domain R, prove that I divides J if and only if $J \subseteq I$. Hence deduce that if P is prime ideal and P|IJ, then P|I or P|J.
 - b) Prove or disprove the following :
 - i) Every unique factorization domain is integrally closed.
 - ii) Every principal ideal domain is a Dedekind domain.
 - iii) Every Dedekind domain is a principal ideal domain.
 - c) Find the prime factorization of the ideal $68\mathbb{Z}$ in the ring \mathbb{Z} . (4+8+2)
- 7. a) Let K be an algebraic number field and let \mathcal{O}_{K} be its ring of integers. Prove that any non-zero proper ideal of \mathcal{O}_{K} has finitely many divisors.
 - b) Let K be an algebraic number field of degree n. If a rational prime p ramifies in K, then prove that p divides d_{κ} , the discriminant of K.
 - c) Let $K = \mathbb{Q}(\theta)$, where θ is a root of the polynomial $x^3 18x 6$. Find out how the rational primes 2, 3, 5 and 11 split in K. (5+5+4)
- 8. a) Define the class-group and the class-number of an algebraic number field K. Prove that \mathcal{O}_{K} , the ring of integers of K is unique factorization domain if and only if the class-number is 1.
 - b) Determine the class number of $K = \mathbb{Q}(\sqrt{-19})$. (8+6)

(2+12)