Reg. No.									
----------	--	--	--	--	--	--	--	--	--

PHH 451

II Semester M.Sc. Degree Examination, September/October 2022 (CBCS) PHYSICS Mathematical Physics – II

Time : 3 Hours

Max. Marks: 70

Note : Answer any four full questions, choosing one from each in Part – I to IV. Part – V is compulsory.

PART – I

1.	a)) $A^{\beta\gamma}_{\alpha}$ and B^{θ}_{δ} are two tensors. Show that their outer product is also a tensor.						
	b)	b) Obtain the Christoffel symbols of II kind in plane polar coordinates.						
	c)	Define i) contravariant and covariant vectors ii) contraction of indices in a tensor.	5					
2.	a)	 What are Christoffel symbols of I kind ? Show Christoffel symbols of I kind do not transform like tensors. 						
	b) Show that addition and subtraction of two tensors is also tensors of sar rank.							
		PART – II						
3.	a)	Calculate the cosine Fourier transform of e^{-ax^2} , where a is a positive integer.	5					
	b)	State Convolution theorem. Using Convolution theorem for Laplace						
		transform, evaluate $L^{-1}\left\{\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right\}$ with $a \neq b$.	10					

- 4. a) Solve the integral equation $\phi(x) = x + \frac{1}{2} \int_{-1}^{+1} (t x) \phi(t) dt$ using Neumann series method.
 - b) Find the series of sine and cosines of multiples of x which will represent x² in the interval $-\pi < x < \pi$. Hence deduce that $\frac{\pi^2}{6} = \sum_{n=0}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ **10**

P.T.O.

5

PHH 451

PART – III

- 5. a) A cylinder has length 1 cm, which is measurable with a probable error of \pm a and has a radius r cm, which is measurable with a probable error \pm b. Find the area of the curved surface and determined the probable error.
 - b) Using Trapezoidal rule, evaluate $\int_0^1 \frac{dx}{1+x^2}$ by dividing that interval (0, 1) into

10 equal parts correct to 4 decimals.

- 6. a) Using Newton-Rapson method obtain the root of $\cos x = 1 x^2$ to three decimals.
 - b) Obtain the best fit second-degree parabola to the following data using least square fit method.

Х	1	2	3	4	5	6	7
Υ	-5	-2	5	16	31	50	73

- 7. a) Explain Homomorphism and Isomorphism between the two groups with an example.
 - b) Show that the rotations about the z-axis form a subgroup of SO(3). Is it an invariant subgroup ?
- 8. a) Explain in detail the special unitary groups SU (2) and SU (3) with an example.
 - b) Explain representation of a group with example. Distinguish between reducible and irreducible representation.

- 9. Answer any two of the following.
 - a) Explain Quotient law for the tensor and illustrate with the example.
 - b) Prove that the Sturn-Liouville operator is Hermitian over the range [a, b] and under the boundary condition.
 - c) Find the numerical solution of differential equation $\frac{dy}{dx} = 2y^{\frac{1}{2}}$, y(0) = 1 for x = 0.5 in steps of 0.25 using Runge-Kutta method.
 - d) State and prove Schur's lemma II.

6

9

7

8

10

7

8

5

(5×2=10)