Reg. No.

PHH 452

Second Semester M.Sc. Degree Examination, Sept./Oct. 2022 PHYSICS
 Quantum Mechanics II

Note : Answer any four questions choosing one from each Unit - I - IV and Unit - V is compulsory.
UNIT - I

1. a) Construct and prove Schwartz inequality.
b) Construct matrix representation of a linear operator.
c) Check whether the vectors $A=(1,2,-1), B=(1,0,1), C=(1,1,0)$ can form a linear vector space.
2. a) State and obtain the general Heisenberg uncertainty principle.
b) Define Hermitian Operator. Show that its eigenvalues are real using Dirac Ket and Bra notation.
UNIT - II
3. a) Explain the Schrodinger and Heisenberg representation and hence obtain the equations of motion in Heisenberg picture.
b) Deduce the commutation relations between the Pauli spin matrices.
4. a) Outline the theory of addition of two angular momenta.
b) Solve the harmonic oscillator problem using matrix method and obtain eigenvalue.
UNIT - III
5. a) Discuss in detail time dependent perturbation theory and hence deduce the Fermi golden rule.
b) Discuss the first order degenerate perturbation theory of Zeeman effect.
6. a) Evaluate the energy values of normal state of helium atom using variation Method.
b) With suitable example explain the WKB approximation.

> UNIT - IV
7. a) Arrive at the Klein Gordon equation for a free particle. Obtain the equation of continuity and explain the difficulties associated with it.
b) Derive the plane wave solutions of the Dirac equation for a particle in a central field. Explain the concept of antiparticle.
8. a) Explain the term second quantization. Show that the second quantization of the one-particle non-relativistic Schrodinger equation results in a Schrodinger equation for several non-interacting particles.
b) What are creation and annihilation operators ? Discuss their commutation and anti-commutation relations along with the significance.
UNIT - V
9. Answer any two questions.
a) If A and B are two linear operators such that their simultaneous eigen states form a complete set, then show that A and B commute.
b) If A and B are vector operators such that $[\sigma, A]=[\sigma, B]=0$, show that $(\sigma . A)(\sigma . A)=A . B+i \sigma .(A \times B)$.
c) Linear harmonic oscillator is perturbed by $\mathrm{H}^{1}=1 / 2 b x^{2}$, calculate the first order corrections to its ground state.
d) Show that creation operator for fermions is given by $\mathrm{a}^{\ddagger}=|n>1=(1-n)|(1-n)>$ where $\mathrm{n}=0,1$.

