Reg. No. \square

PHH 552

IV Semester M.Sc. Degree Examination, September/October 2022 PHYSICS
 Astrophysics and Relativity

Time : 3 Hours
Max. Marks : 70

Note : Answer any four questions choosing one from each of the Parts - I to IV and two questions in Part - V.

PART - I

1. a) Explain the trigonometric parallax method of measuring stellar distances.
b) Derive an expression for the distance to a starin terms of its distance modulus.
c) What is the distance to a star whose parallaxis 0.1 arcsec ?

Given : $1 \mathrm{pc}=2.06 \times 10^{5} \mathrm{AU}$ (or $3.09 \times 10^{13} \mathrm{~km}$, or 3.26 light years). A star is at a distance of 100 pc , and its apparent magnitude is 5 . What is its absolute magnitude ?
2. a) What is a variable star ? What are the different types of variable stars ? Explain the cepheid group of variables.
b) What are Pulsars and Black holes ? Explain.
PART - II
3. a) Explain with supportive evidences the big-bang model of the origin of universe.
b) What is an H-R diagram ? Explain its features and uses in astronomy.
4. a) Describe the process of energy generation in stars.
b) What is white dwarf ? Explain. Describe the structure and properties of a typical white dwarf star.

PART - III

5. a) Derive Lorentz transformation equations and show that speed of light is a universal constant.
b) Two rockets are leaving their space station along perpendicular paths, as measured by an observer on the space station. Rocket 1 moves at 0.60 c and rocket 2 moves at 0.80 c , both measured relative to the space station. What is the velocity of rocket 2 as observed from rocket 1 ?
6. a) Explain Relativistic Doppler Effect. Obtain expressions for the apparent change in frequencies in the case of Longitudinal and transverse Doppler effect.
b) A neutral K meson (mass $497.7 \mathrm{MeV} / \mathrm{c}^{2}$) is moving with a kinetic energy of 77.0 MeV . It decays into a pi meson (mass $139.6 \mathrm{MeV} / \mathrm{c}^{2}$) and another particle of unknown mass. The pi meson is moving in the direction of the original K meson with a momentum of $381.6 \mathrm{MeV} / \mathrm{c}$.
i) Find the momentum and total relativistic energy of the unknown particle.
ii) Find the mass of the unknown particle.
PART - IV
7. a) Obtain Maxwell's equations in covariant form.
b) Discuss the covariant differentiation of tensors and obtain equation of geodesic.
8. a) What are Christoffel's symbols ? Obtain their transformation rules for first and second kind.
b) Discuss the Schwarzschild solution of Einstein's equations and derive an expression for Schwarzschild line element.

PART - V

9. Answer any two of the following.
($2 \times 5=10$)
a) Find the velocity and momentum of an electron $\left(E_{0}=0.511 \mathrm{MeV}\right)$ with a kinetic energy of 10.0 MeV .
b) The average lifetime of a pi meson in its own frame of reference is $2.6 \times 10^{-8} \mathrm{~s}$. If the meson moves with a speed of 0.95 c , What is (a) its mean lifetime as measured by an observer on Earth and (b) the average distance it travels before decaying, as measured by an observer on Earth ?
c) Explain the experiment of Rebka and Pound.
d) Write a short note on Neutron stars.
