

PHS 553

Fourth Semester M.Sc. Degree Examination, Sept./Oct. 2022 (CBCS) PHYSICS

Condensed Matter Physics – III

Time: 3 Hours Max. Marks: 70

Instruction: Answer any four full questions, choosing one from each
Part (I – IV) and any two questions from Part – V.

		PART – I	
1.	a)	Describe the classical field theory of ferromagnetism and compare the results with experiment.	10
	b)	Qualitatively describe the use of neutron diffraction for magnetic structure analysis.	5
2.	a)	Explain the domain structure in ferromagnetic materials.	7
	b)	Describe Ising model of ferromagnetism.	8
		PART – II	
		I AITI – II	
3.	a)	Describe the application of molecular field theory for antiferromagnetic arrangement of atomic moments.	10
	b)	Write a note on spinels and garnets.	5
4.	a)	Describe the molecular field theory of ferrimagnetism.	10
	b)	Explain the formation of magnetic bubbles and give their important properties.	5
		PART – III	
5.	a)	Describe the paramagnetic susceptibility in an alternating magnetic field.	8
	b)	Explain the construction and working of ESR spectrometer.	7
6.	a)	Obtain Bloch equations and introduce the concept of relaxation times.	7
	b)	Give the basic principle of NMR and explain NMR spectrometer.	8

PART – IV

7.	a)	Describe mechanical attrition, lithography and methods of synthesis of	
		nanomaterials.	9
	b)	Explain the Metal-Organic Chemical Vapor Deposition (MOCVD) method.	6
8.	a)	What are surfactants? Explain the size-controlled synthesis of nanoparticles	
		using surfactants.	8
	b)	Explain the synthesis of nanomaterials by nanolithography and soft	
		lithography using scanning probe methods.	7
		DADT V	
		PART – V	
9.	Ans	swer any two questions from the following:	
	a)	State and explain Bloch T ^{3/2} law.	5
	b)	Explain the meaning of indirect exchange interaction in anti-ferromagnetic	
		material.	5
	c)	Explain spin-lattice relaxation in a two-level system.	5
	d)	Give the general applications of nanomaterials.	5
