Reg. No.	
----------	--

PHS 558

IV Semester M.Sc. Degree Examination, September/October 2022 PHYSICS (CBCS) **Nuclear Physics – IV**

Time : 3 Hours

Max. Marks: 70

Instructions : 1) Answer any four full questions, choosing one from each in Part – I to IV. 2) Part – V is compulsory.

PART – I

1.	a)	Show that same fraction of energy is transferred in each successive collision of neutron with the moderator nucleus.	7
	b)	Define the moderating ratio and transport mean free path.	4
	c)	Enumerate the types of nuclear reactors on the basis moderator used.	4
		OR	
2.	a)	Using neutron transport equation, obtain the expression for neutron flux distribution in an infinite medium with point source at the centre.	7
	b)	Define neutron slowing down density and hence arrive at the Fermi age equation.	8
		PART – II	
3.	a)	Give classification of neutrons on the basis of their energy.	4
	b)	What are thermal neutrons ? Describe the principle of detection of thermal neutrons using neutron activation method. Illustrate it with an example.	7
	c)	What are neutron monochromators ? Explain.	4
		OR	
4.	a)	Enumerate the various magnetic confinement systems. Describe any two of them in detail with suitable schematic diagrams.	8
	b)	What is Lawson criterion ? Explain.	4
	c)	Explain the basic principle of fusion process.	3

PHS 558

PART – III

5.	a)	Explain the various conservation laws in fundamental particle interactions with examples.	8
	b)	List the properties of muons.	3
	c)	Discuss the decay nature of Muon.	4
		OR	
6.	a)	Elucidate the method of artificial production of pions.	6
	b)	Discuss the properties of pions.	5
	c)	Distinguish the production mechanisms of pions and muons.	4
		PART – IV	
7.	a)	Write down the Gell-mann and Nishijima formula. Arrange the baryons and mesons separately in a table by listing their masses, isospin, charge Q, Baryon number B and strangeness S.	7
	b)	Explain Glashow-Weinberg-Salam model of unification of the electromagnetic and weak interactions.	8
		OR	
8.	a)	Write a note on CP violations in Kaon-Decay.	5
	b)	Enumerate the fundamental particle interactions, their coupling strength, range of interaction and an example for each of the interactions.	5
	c)	Discuss the experimental measurements which support the quark hypothesis.	5
		PART – V	
9.	An	swer any two of the following. (5×2=1	0)
	a)	Calculate the ratio of average logarithmic decrement in neutron energy for hydrogen and graphite.	
	b)	Calculate the diffusion length for thermal neutrons in graphite.	
		Given : microscopic absorption cross section = 3.20 mb , microscopic scattering cross section = 4.80 mb and density of graphite = 1.62 gm/cm^3 .	
	c)	Calculate the energy resolution of crystal spectrometer velocity selector for 1eV neutrons undergo first order diffraction in a crystal of lattice spacing 2.32Å. Sharpness of collimation determines $d\theta = 0.1^{\circ}$.	
	d)	Give the quark content of five hadrons.	