Reg. No.									
----------	--	--	--	--	--	--	--	--	--

STH 453

Max. Marks: 70

II Semester M.Sc. Examination, September/October 2022 STATISTICS Theory of Point Estimation

Time : 3 Hours

Note : Question No. **1** is **compulsory**. Answer **any four** questions from the remaining seven questions. Figures to **right** indicate marks to sub-questions.

Answer **any 6** of the following :

- 1. a) Demonstrate that B(1, 2/2) is not complete.
 - b) State the likelihood principle of obtaining minimal sufficient statistics.
 - c) Given a sample of size n from N(θ , 1), obtain Fisher information about θ .
 - d) Based on a random sample of size n from $Exp(\lambda)$, obtain Moment estimator of $\lambda > 0$.
 - e) Prove that UMVU estimator is unique.
 - f) Define consistent estimator and state invariance property of consistent estimator.
 - g) Let $X_1, X_2, ..., X_n$ be a random sample of size n from Poisson distribution with parameter θ . Show that sample mean is CAN estimator for θ .
 - h) Given a random sample from U(0, θ) obtain MLE of θ .
- 2. a) Define Fisher information for one and several parameter models. Obtain the Fisher information contained in a sample of size n from Cauchy distribution with median θ .
 - b) Explain the concept of completeness. Is the Bernoulli family complete ? Justify your answer. (7+6)
- 3. a) Obtain a sufficient statistics for θ of U(0, θ) distribution and examine whether it is complete.
 - b) State the factorization theorem and prove it in the discrete case. (6+7)

P.T.O.

(6×3=18)

STH 453

- 4. a) State and Prove Rao-Blackwell-Lehman-Scheffe theorem.
 - b) Given a random sample of size n from Poisson distribution with parameter λ . Let N be the number of observations which are equal to zero. Obtain unbiased estimator for $e^{-\lambda}$ and improve the estimator using Rao-Blackwell Theorem. (5+8)
- 5. a) State and Prove Cramer-Rao inequality. Use it obtain the UMVUE for θ based on a random sample of size n from exponential distribution with mean θ .
 - b) State and Prove necessary and sufficient conditions for an estimator to be UMVUE. (8+5)
- 6. a) State and prove invariance property of ML estimator.
 - b) Under the regularity conditions prove that MLE is a consistent estimator for θ . (7+6)
- 7. a) Given a random sample of size n from a lognormal distribution with parameters μ and σ , obtain moment estimators for μ and σ .
 - b) Given a set of iid r.v's $X_1, X_2, ..., X_n$ from an exponential distribution with location parameter θ and scale parameter σ . Obtain MLE's of (μ , σ). (6+7)
- 8. a) Given a random sample of size n from a Gamma (α , 1) distribution, obtain MLE's of (α , 1). Show that the estimators is CAN.
 - b) Given a set of iid r.v's X₁, X₂, ..., X_n from a Binomial (n, p) distribution, where both n and p are unknown, obtain moment estimators of (n, p). Prove or disprove that moment estimators are jointly consistent for (n, p). (5+8)