Reg. No.									
----------	--	--	--	--	--	--	--	--	--

STS 554

IV Semester M.Sc. Degree Examination, September/October 2022 STATISTICS Financial Time Series

Time : 3 Hours

Instructions : 1) Question No. 1 is compulsory.2) Answer any four questions from the remaining.

- 1. Answer **any six** subdivisions from the following.
 - a) Explain the special features of financial time series. How it is different from classical time series ?
 - b) Explain the terms :
 - i) Continuously compounded multiperiod return
 - ii) Portfolio return
 - iii) Dividend payment.
 - c) Define sample skewness and sample kurtosis of the return. Give the test statistics for
 - i) testing skewness of return is zero
 - ii) testing excess kurtosis of return is zero.
 - d) Define sample autocorrelation function (ACF) of a stationary time series. Obtain autocorrelation function of the time series $X_t = 0.9X_{t-1} + \epsilon_t$. Is it stationary ? Justify.
 - e) Explain the test procedure for detecting unit root in a time series.
 - f) Describe seasonal integrated autoregressive moving average model.
 - g) Define volatility and state its properties.
 - h) Explain co integration and error correction models.
- 2. a) Define ARCH(p) model. Explain a test procedure for testing the ARCH effect.
 - b) Let Y_t follows ARCH(1) process. Show that $\{Y_t\}$ is uncorrelated. Obtain ACF of Y_t^2 . Show that marginal distribution of $\{Y_t\}$ is heavy tailed.
 - c) Obtain the Yule-Walker equation for the ARCH(p) process. (4+5+4)

P.T.O.

(6×3=18)

Max. Marks: 70

STS 554

(7+6)

3. a) Define moving average process of order q. Obtain its variance and auto covariance function.

b) Let
$$X_t$$
 follows AR(1) and $\overline{X}_n = \frac{\sum_{t=1}^n X_t}{n}$ find Var(\overline{X}_n).

- c) Suppose that the daily log return of a security follows the model rt = 0.01 + 0.2rt 2 + at, where {at} is a Gaussian white noise series with mean zero and variance 0.02. What are the mean and variance of the return series rt? Compute the lag-1 and lag-2 autocorrelations of rt. (5+3+5)
- 4. a) Explain Yule-Walker method of estimation for an AR(p) model.
 - b) Write the model in backward shift operator $X_t = 1.5X_{t-1} 0.6X_{t-2} + \varepsilon_t$. Examine for stationary. Obtain the Yule-Walker equations for this model and solve these equations to obtain ρ_1 and ρ_2 . (5+8)
- 5. a) Define GARCH (p, q) model for the return series. Obtain the variance and kurtosis of return series which follows GARCH(1 1).
 - b) Obtain the maximum likelihood estimates of parameters of ARCH(1) process.
- 6. a) Define Exponential GARCH and GARCH in mean models. State elementary properties of these models.
 - b) Explain how GARCH(1 1) is related to ARMA(1 1) process. Whether writing GARCH as ARMA solve the problem of estimation. Explain.
 - c) Explain the order determination procedure of classical financial time series models. (5+4+4)
- 7. a) Explain residual analysis in time series modeling. Explain the related tests based on residuals.
 - b) Obtain h-step ahead forecast of GARCH(1, 2) process.
 - c) Explain the steps involved in building a financial time series model. (4+5+4)
- 8. a) Obtain the autocorrelation function of GARCH(1 1) process.
 - b) Obtain Explicit expression for ACF of ARMA(1 1) process.
 - c) Derive the L-step ahead forecast equation of ARCH (p) process. (4+4+5)