P.T.O.

Reg. No.

II Semester Open Elective (NEP 2020) Examination, September 2022 (2021 – 2022 Batch Onwards)

MATHEMATICS – II (Science Stream)

Time : 2 Hours

Instructions : 1) Answer any eight questions from Part – A. Each question carries 3 marks.

- 2) Answers to Part **A** should be written in the **first few** pages of the answer book before answers to Part **B**.
- Answer any six questions from Part B by choosing two questions from each Unit. Each question carries 6 marks.
- 4) Scientific calculators are allowed.

Answer any eight questions.

- Define a binary operation on the set of positive integers by a * b = max {a, b}. Show that the operation is both associative and commutative.
- 2. On the set of integers Z, * is defined by a + b –1 \forall a, b \in Z. Find the inverse of 2.
- 3. Form the table for multiplication modulo 10 for the set {1, 3, 7, 9}.
- 4. Construct the Klein's four group.
- 5. Evaluate : $\lim_{(x, y) \to (1, 1)} \frac{xy y 2x + 2}{x 1}$, $x \neq 1$.
- 6. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for $f(x, y) = x^2 + 3xy + y 1$.
- 7. Find $\frac{dw}{dt}$ for $w = x^2y y^2$ with x = sint and $y = e^t$.
- 8. Prove that $f(x, y) = \frac{\sqrt{x} + \sqrt{y}}{x + y}$ is a homogeneous function of degree $-\frac{1}{2}$.

(8×3=24)

BSCMTEN 201

Max. Marks: 60

RSCMTE

BSCMTEN 201

- 9. Evaluate $\int_C (x + y) ds$, where C is the straight line segment x = t, y = 1 t, z = 0 from (0, 1, 0) to (1, 0, 0).
- 10. Evaluate $\int_0^3 \int_0^2 (4-y^2) dy dx$.
- 11. Sketch the region of integration $\int_0^{\pi} \int_0^{x} (x \sin y) dy dx$.
- 12. Evaluate $\int_{1}^{e} \int_{1}^{e} \int_{1}^{e} \frac{1}{xyz} dxdydz$.

PART – B

Answer **any six** questions by choosing **two** questions from **each** Unit. (6×6=36)

Unit – I

- 13. On the set of all integers Z, define a binary operation * by $a^*b = a + b + 1$, $a, b \in \mathbb{R}$. Prove that (Z, *) is an abelian group.
- 14. Let G = Q {-1} be the set of all rational numbers except 1 and * be a binary operation on G defined by a * b = a + b + ab ∀a, b ∈ G. Prove that (G, *) is an infinite abelian group.
- 15. Prove that the set G = {3, 6, 9, 12} forms a finite abelian group of order 4 under multiplication modulo 15.
- 16. Find the orders of the elements of the additive modulo 6 group $(Z_6, +_6)$.

Unit – II

- 17. Show that the function $f(x, y) = \frac{2x^2y}{x^4 + y^2}$ has no limit as (x, y) approaches (0, 0) using two path test.
- 18. Show that f (x, y, z) = $x^2 + y^2 2z^2$ satisfies Laplace equation.
- 19. Find the local extreme values of the function f (x, y) = $xy x^2 y^2 2x 2y + 4$ if exists.
- 20. Verify Euler's theorem for the function $f(x, y) = x^2 + 2hxy + y^2$.

-3-

Unit – III

- 21. Integrate $f(x, y, z) = x 3y^2 + z$ over the line segment C joining the origin to the point (1, 1, 1).
- 22. Sketch the region of integration of the double integral $\int_0^1 \int_2^{4-2x} dy dx$ and write an equivalent double integral with the order of integration reversed and evaluate.
- 23. Find the area bounded by y = x and $y = x^2$ in the first quadrant.
- 24. Evaluate :
 - a) $\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{9-x^2}} dz \, dy \, dx$
 - b) $\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) dz dy dx$.