Reg. No. \square

II Semester Open Elective (NEP 2020) Examination, September 2022 (2021 - 2022 Batch Onwards)
 MATHEMATICS - II (Science Stream)

Time : 2 Hours
Max. Marks : 60

Instructions : 1) Answer any eight questions from Part - A. Each question carries 3 marks.
 2) Answers to Part - A should be written in the first few pages of the answer book before answers to Part - B.
 3) Answer any six questions from Part - B by choosing two questions from each Unit. Each question carries 6 marks.
 4) Scientific calculators are allowed.

> PART - A

Answer any eight questions.

1. Define a binary operation on the set of positive integers by $a * b=\max \{a, b\}$. Show that the operation is both associative and commutative.
2. On the set of integers Z, * is defined by $a+b-1 \forall a, b \in Z$. Find the inverse of 2 .
3. Form the table for multiplication modulo 10 for the set $\{1,3,7,9\}$.
4. Construct the Klein's four group.
5. Evaluate : $\lim _{(x, y) \rightarrow(1,1)} \frac{x y-y-2 x+2}{x-1}, x \neq 1$.
6. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for $f(x, y)=x^{2}+3 x y+y-1$.
7. Find $\frac{d w}{d t}$ for $w=x^{2} y-y^{2}$ with $x=$ sint and $y=e^{t}$.
8. Prove that $f(x, y)=\frac{\sqrt{x}+\sqrt{y}}{x+y}$ is a homogeneous function of degree $-\frac{1}{2}$.
9. Evaluate $\int_{C}(x+y) d s$, where C is the straight line segment $x=t, y=1-t, z=0$ from $(0,1,0)$ to $(1,0,0)$.
10. Evaluate $\int_{0}^{3} \int_{0}^{2}\left(4-y^{2}\right) d y d x$.
11. Sketch the region of integration $\int_{0}^{\pi} \int_{0}^{x}(x \sin y) d y d x$.
12. Evaluate $\int_{1}^{e} \int_{1}^{e} \int_{1}^{e} \frac{1}{x y z} d x d y d z$.

PART - B
Answer any six questions by choosing two questions from each Unit.
Unit - I
13. On the set of all integers Z, define a binary operation * by $a * b=a+b+1, a, b \in R$. Prove that $\left(Z,{ }^{*}\right)$ is an abelian group.
14. Let $G=Q-\{-1\}$ be the set of all rational numbers except -1 and * be a binary operation on G defined by $a * b=a+b+a b \forall a, b \in G$. Prove that $\left(G,{ }^{*}\right)$ is an infinite abelian group.
15. Prove that the set $\mathrm{G}=\{3,6,9,12\}$ forms a finite abelian group of order 4 under multiplication modulo 15.
16. Find the orders of the elements of the additive modulo 6 group $\left(Z_{6},+_{6}\right)$.
Unit - II
17. Show that the function $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}$ has no limit as (x, y) approaches $(0,0)$
using two path test.
18. Show that $f(x, y, z)=x^{2}+y^{2}-2 z^{2}$ satisfies Laplace equation.
19. Find the local extreme values of the function $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$ if exists.
20. Verify Euler's theorem for the function $f(x, y)=x^{2}+2 h x y+y^{2}$.
Unit - III
21. Integrate $f(x, y, z)=x-3 y^{2}+z$ over the line segment C joining the origin to the point (1, 1, 1).
22. Sketch the region of integration of the double integral $\int_{0}^{1} \int_{2}^{4-2 x} d y d x$ and write an equivalent double integral with the order of integration reversed and evaluate.
23. Find the area bounded by $y=x$ and $y=x^{2}$ in the first quadrant.
24. Evaluate :
a) $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}}} d z d y d x$
b) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x$.

