MANGALOREUNIVERSITY B. Sc. MICROBIOLOGY National Education Policy (NEP) - 2020

SYLLABUS AND EXAMINATION SCHEME

FOR

III AND IV SEMESTER

2022-23

PREAMBLE

The role of education is paramount in nation building. One of the major objectives of UGC is maintenance of standards of higher education. Over the past decades the higher education system of our country has undergone substantial structural and functional changes resulting in both quantitative and qualitative development of the beneficiaries. Such changes have gained momentum with the introduction of Choice Based Credit System (CBCS) which further expects Learning Outcome-Based curriculum to maximize the benefits of the newly designed curriculum. The Learning Outcome- Based Curriculum in Microbiology will help the teachers of the discipline to visualize the curriculum more specifically in terms of the learning outcomes expected from the students at the end of the instructional process. The commission strives to promote the link of students with the society/industry such that majority of the students engage in socially productive activities during their period of study in the institutions and at least half of the graduate students will secure access to employment/self-employment or engage themselves in pursuit of higher education. The model curriculum envisages to cater to the developmental trends in higher education, incorporating multi- disciplinary skills, professional and soft skills such as teamwork, communication skills, leadership skills, time management skills and inculcate human values, professional ethics, and the spirit of Innovation / entrepreneurship and critical thinking among students and promote avenues for display of these talents, linking general studies with professional courses. Besides imparting disciplinary knowledge to the learners, curriculum should aim to equip the students with competencies like problem solving, analytical reasoning and moral and ethical awareness. Introduction of internship and appropriate fieldwork/case studies are embedded in the curriculum for providing wider exposure to the students and enhancing their employability.

Learning outcomes specify what exactly the graduates are expected to know after completing a Programme of study. The expected learning outcomes are used as reference points to help formulate graduate attributes, qualification descriptors, Programme learning outcomes and course learning outcomes. Keeping the above objectives of higher education in mind the Learning Outcome-Based Curriculum Framework (LOCF) for the discipline of Microbiology has been prepared and presented here.

Composition of Curriculum - Committee for Microbiology

Sl. No.	Name and Organization	Designation
1	Prof. Dayanand Agsar	
	Vice-Chancellor	Chairman
	Gulbarga University, Kalaburagi	
2	Prof. S.R. Niranjan	Member
	Professor, University of Mysore, Mysore	
3	Dr. Vedamurthy.A.B	Member
	Professor, Karnataka University, Dharwad	
4	Dr.V.Krishna	Member
	Professor, Kuvempu University, Shivamogga	
5	Dr.C.Srinivas	Member
	Professor, Bangalore University, Bengaluru	
6	Dr.M.Jayashankar	Member
	Professor, Mangalore University, Konaje	
7	Dr.Arun Jyothi	Member
	MathiasAssociate	
	Professor	
	Maharani Cluster University, Bengaluru	
8	Smt. K.M.Sharuraj	Member
	Associate Professor	
9	Govt. Science College, Hassan Dr. Anuradha.M	Member
9	Principal, Padmashree Institute of Management and Sciences,	Member
	Bengaluru.	
10	Dr.Gayatri Devaraj	Member
	Professor, Davangare University, Davangere	
11	Dr.Syeda Kausar Fathima	Member
	Associate Professor, Govt. College for Women, Mandya	
12	Dr. M. Jayappa	Member
	Special Officer, KSHEC, Bengaluru	Convener

Contents

SN	Content	Page No
1	Microbiology Model Curriculum – Programme outcomes	5
2	Contents of Microbiology 3 rd & 4 th Semester	6
3	Curriculum of 3 rd semester Microbiology	7-12
4	Curriculum of 4 th semester Microbiology	13-18
5	Question paper pattern for Practical examination	19
6	Question paper pattern for Theory examination	20-22

Curriculum as per KSHEC

Program Name	B.Sc. Discipline	Total Credits for the Program	Credits
Core	Microbiology	Year of implementation	2021-22

Program Outcomes: At the end of the program the student should be able to:

(Refer to literature on outcome-based education (OBE) for details on Program Outcomes)

PO1. Knowledge and understanding of concepts of microbiology and its application in pharma,food, agriculture, beverages, nutraceutical industries.

PO2. Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance

PO3. Competent to apply the knowledge gained for conserving the environment and resolving the environmental related issues.

PO4. Learning and practicing professional skills in handling microbes and contaminants inlaboratories and production sectors.

PO5.Exploring the microbial world and analysing the specific benefits and challenges.

PO6. Applying the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture, and food sectors.

PO7. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.

PO8. Understanding biochemical and physiological aspects of microbes and developing broader perspective to identify innovative solutions for present and future challenges posed by microbes.

PO9. Understanding and application of microbial principles in forensic and working knowledge about clinical microbiology.

PO10. Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectual property rights, biosafety and biohazards.

PO11. Demonstrate the ability to identify key questions in microbiological research, optimize research methods, and analyse outcomes by adopting scientific methods, thereby improving the employability.

PO12. Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology.

Assessment:Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	25	25
Projects	-	-
Experiential Learning (Internships etc.)	-	-

Contents of Courses for B.Sc. Microbiology as Major Model II A

I		Å	/ Ir	70		Mai	rks
Semester	Course code	Course Category	Theory / Practical	Credits	Paper Title	S.A	I.A/ F.A
		DSC- 7	Theory	3	Microbial Diversity	60	40
3.			Practical	2	Microbial Diversity	25	25
		OE- 3	Theory	3	Microbial Entrepreneurship	60	40
		DSC- 8	Theory	3	Microbial Enzymology and Metabolism	60	40
4.		220 0	Practical	2	Microbial Enzymology and Metabolism	25	25
		OE- 4	Theory	3	Human Microbiome	60	40
	Exit Option	with Diploma i	n Microbiolo	gy (100 Cre	edits)		

Program Name	BSc Microb	oiology		Semester	Third Sen	nester
Course Title	Microbial I	Diversity	7			
Course No.	MBL-103		DSC -3T	No. of Theory Credits	4	
Contact hours	56 hrs Duration of ESA/Exam 2 Hours				2 Hours	
Formative Ass Marks	essment	40		Summative Assessment Marks	60	
Course Pre-re	quisite (s):.					
 Acquire kn Study the c Eukaryotic 	owledge abou haracteristics, microorganis	it micro classifi ms.	bes and their divers cation and econom nd their diversity	student should be able to: sity ic importance of Prokaryoti	c and	
			Content			Hrs
Unit–I						08 Hrs
Study and mea Conservation a	- Major cla sures of micr	ssificati obial di	on systems-Numer	ical and Chemotaxonomy. ity.		
Unit -II						
An overview General char	factors regula of Bergey's 1 acteristics; C	tingdist Manual lassifica	ribution of Prokary of Systematic Bact tion; Economic in			16 Hrs
Archaea: The			U U			
Bacteria: Esc						
Cyanobacter	•	•				
Actinomycet Rickettsiae:			ιηκια			
Chlamydiae			atis			
Spirochaetes	-					
Mycoplasma	-	-				
Unit -III						
	cters, distribu	ution, Cl	assification of euka	aryotic Microorganisms: the level of classes. Salien	t features	16 Hrs
-	and economi	c impor		pe study: <i>Rhizopus, Sacch</i>		
study: Chlore	ella, Diatom,	Gracila	ria. Symbiotic asso			
Protozoa: O	ccurrence, dis	stributio	n, reproduction and	l economic importance. Cla	ssification up	

Unit -IV	16 Hrs
Diversity of Viruses	
General structure, Isolation, purification and culturing of viruses.	
Principles of ViralTaxonomy- Baltimore and ICTV and the recent trends.	
Capsid symmetry- Icosahedral, helical, complex	
Animal viruses: HIV, Corona, Ortho and Paramyxovirus, Oncogenic virus	
Plant viruses: TMV, Papaya virus	
Microbial viruses: T4, lambda, cyano and myco phages.	
Sub viral particles.	
Viroids and Prions.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

				Pro	gra	m C	outc	ome	es (I	POs))	
Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
Knowledge about microbes and their diversity		✓			~			~				
Study, characters, classification and economicimportance of Pro-eukaryotic and Eukaryotic microbes		~	✓		√							
Knowledge about viruses and their diversity						~				~		
Pedagogy: Lectures, Seminars, Industry Visits, De Summative Assessment = 60 Marks	ebat	es, Ç	Quiz	and A	Assig	gnm	ents	8				
Formative Assessment Occasion / type				We	ight	age	in M	lark	s			
Attendance		10										
Seminar and Assignment				10								
Debates and Quiz					1	10						
Test		10										
Total		60 marks + 40 marks = 100 marks										

Cou	rse Title	Microbial 1	Diversity (Practical)	Practical Credits	2			
Cou	irse No.	MBL-103	DSC-3P	Contact hours	26 Hrs			
			Content	II				
1.	Isolation	and identification	of bacteria from soil, air	and water				
2.	Isolation,	and identification	n of fungi from soil, air ar	nd water				
3.	Isolation,	and identification	n of Cyanobacteria					
4.	Isolation,	and identification	n of Actinomycetes					
5.	Study of r	norphology of bad	cteria - cocci, bacilli, vibi	rio and spiral				
6.	Measuren	nent of microbial	cell size by Micrometry,	-				
7.		int by haemocytor	•					
8.	-		Nostoc, Microcystis Spir	rulina				
9.	• 1		lla, Diatoms, Gracilaria					
	• •			•				
10.	• 1		ıs, Saccharomyces, Agar					
11.	Type stud	ly: Protozoa: <i>Eug</i>	lena,Plasmodium, Trypar	iosoma				
12.	Study of r	nicrographs /mod	lels - HIV, TMV, Corona	virus				
Prac	tical assess	ment						
			Assessment					
		Formative asse	ssment	Summative Assessment				
	Total Mar							
Ass		ccasion / type	Weightage in Marks	Practical Exam				
	Rec Te		<u>5</u> 10	-				
	Attend		5	25	50			
			5		20			
	Performance5Total2525							

References:

- 1. Black, J.G. 2002. Microbiology-Principles and Explorations. John Wiley and Sons, Inc. New York
- 2. Brock, T.D. and Madigan, M.T. 1988. Biology of Microorganisms, V Edition. Prentice Hall. NewJersey
- **3.** Dimmock, N. J., Easton, A. J., and Leppard, K. N. 2001. Introduction to Modern Virology. 5th edition.Blackwell Publishing, USA
- **4.** Flint, S.J., Enquist, L.W., Drug, R.M., Racaniello, V.R. and Skalka, A.M. 2000. Principles of Virology- Molecular Biology, Pathogenesis and Control. ASM Press, Washington, D.C
- **5.** Prescott, Harley, Klein's Microbiology, J.M. Willey, L.M. Sherwood, C.J. Woolverton, 2008. 7thInternational, edition ,McGraw Hill
- 6. Vashishta, B.R, Sinha A.K and Singh V. P. 2005. Botany Fungi, S. Chand and Company Limited, New Delhi

- 7. Kotpal, R.L Protozoa 5th Edition 2008. Rastogi Publications, Meerut, New Delhi.
- Madigan, M.T. Martinko, J.M, Dunlap, P. V. Clark, D. P. 2009. Brock Biology of Microorganisms, 12thedition, Pearson Benjamin Cummings
- **9.** G. J. Tortora, B. R. Funke, C. L. 2008. Microbiology An Introduction, Case, 10th edition., Pearson Education, UK.
- **10.** Stanier, 1987, Ingraham *et al*, General Microbiology, 4th and 5th edition Macmillan education limited
- **11.** Pelczar Jr. Chan, Krieg, Microbiology- Concepts and Applications, International edition, McGraw Hill
- **12.** Alexopoulos, C.J., Mims, C.W. and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp, 4th edition.
- **13.** Vashishta, B.R Sinha A.K and Singh V. P. 2005. Botany Algae S. Chand and Company Limited, New Delhi
- **14.** Dubey R. C., and Maheshwari, D. K. 1999. A Textbook of Microbiology, 1st edition, S. Chand &Company Ltd, New Delhi
- **15.** K. P. Talaro, 2009. Foundations in Microbiology, 7th International edition, McGraw Hill

Date:

Subject Committee Chairperson

Program Name	BSc	Microbiology	Semester	Third Semester	
Course Title		Microbial Ent	repreneurship		
Course Code	MBL:303	OE-3	No. of Theory Credits	3	
Contact hours	Lecture		Duration of ESA/Exam	2 Hours	
Contact nours	Practical				
Formative Asses	sment Marks	40	Summative Assessment M	larks 60	

Course Pre-requisite(s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Demonstrate entrepreneurial skills
- 2. Acquire knowledge on Industrial entrepreneurship
- 3. Acquire knowledge on Healthcare Entrepreneurship

Content	42 Hrs	
Unit–I		
General Entrepreneurship		
Entrepreneurship and microbial entrepreneurship - Introduction and scope, Business		
development, product marketing, HRD, Biosafety and Bioethics, IPR and patenting,		
Governmentorganization/ Institutions/ schemes, Opportunities and challenges.		
Unit -II	14 Hrs	
Industrial Entrepreneurship		
Microbiological Industries – Types, processes and products, Dairy products, Fermented foods,		
Bakery and Confectionery, Alcoholic products and Beverages, Enzymes - Industrial		
production and applications. Biofertilizers and Biopesticides, SCP and SCO. Neutraceutical		
products.		
Unit -III	14 Hrs	
Healthcare Entrepreneurship		
Production and applications: Sanitizers, Antiseptic solutions, Polyphenols (Flavonoids),		
Alkaloids, Cosmetics, Biopigments and Bioplastics, Vaccines, Diagnostic tools and kits.		

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

mmative Assessment = 60 Marks					
Formative Assessment Occasion /	Weightage in Marks				
type					
Attendance	10				
Seminar	10				
Debates and Quiz	10				
Test	10				
Total	60 marks + 40 marks = 100 marks				

References

- 1 Srilakshmi, B. (2007). Dietetics. New Age International publishers. New Delhi
- 2 Srilakshmi, B. (2002). Nutrition Science. New Age International publishers. New Delhi
- 3 Swaminathan, M. (2002). Advanced text book on food and Nutrition. Volume I. Bappco
- 4 Gopalan, C. RamaSastry, B.V. and Balasubramanian, S.C (2009). Nutritive value of IndianFoods. NIN.ICMR.Hyderabad.
- 5 Mudambi S R and Rajagopal M V.2008. Fundamentals of Foods, Nutrition & diet therapy by NewAge International Publishers, New Delhi. 5th edition.

Date:

Subject Committee Chairperson

Program Name	BSc Microbiology		Semester	Fourth Semester	
Course Title	Microbial Enzymolo	ogy and Metabolism			
Course No.	MBL:104	DSC -4T	No. of Theory Credits	4	
Contact hours	56 hrs		Duration of ESA/Exam	2 Hours	
Formative Asse	ssment Marks 40		Summative Assessment Marks 60		

Course Pre-requisite (s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Differentiating concepts of chemoheterotrophic metabolism and chemolithotrophic metabolism.
- 2. Describing the enzyme kinetics, enzyme activity and regulation.
- 3. Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms

Content	56 Hrs
Unit–I	14 Hrs
Metabolism of Carbohydrates	
Concept of aerobic respiration, anaerobic respiration and fermentation.	
Sugar degradation pathways i.e. EMP, ED, Pentose phosphate pathway, Phosphoketolase pathway. TCA cycle.	
Fermentation - Concept of linear and branched fermentation pathways. Fermentation pathways:	
Alcohol fermentation and Pasteur effect; Butyric acid Fermentation, Mixed acid fermentation,	
Propionic acid Fermentation, acetate fermentation. Chemolithotrophic metabolism:	
Chemolithotrophy -Oxidation of Hydrogen, Sulphur, Iron and Nitrogen.	
Anaerobic respiration with special reference to dissimilatory nitrate reduction and sulphate reduction.	
Unit -II	14 Hrs
Metabolism of aminoacids, nucleotides and lipids	
1. Nitrogen Metabolism: Introduction to biological Nitrogen fixation, Ammonia assimilation. Assimilatory nitrate reduction, dissimilatory nitrate reduction, denitrification	
2. Biosynthesis of ribonucleotides and deoxyribonucleotides: The de novo pathway of purines and pyrimidines, recycling by salvage pathway	
3. Amino acid degradation and biosynthesis: Deamination and decarboxylation. An overview of aminoacid biosynthesis	
4. Lipid degradation and biosynthesis: β-oxidation of palmitic acid; Biosynthesis of palmitic acid.	
5. Metabolism of one carbon compounds: Acetogens: Autotrophic pathway of acetate synthesis	
6. Metabolism of two-carbon compounds: Acetate: Acetic acid bacteria: Ethanol oxidation, sugar alcohol oxidation. Glyoxylate and glycolate metabolism: i. Dicarboxylic acid cycle, ii. Glycerate pathway iii. Beta hydroxyl aspartate pathway. Oxalate as carbon and energy source.	

Unit -III	14 Hrs
Basics of Enzymes	
Introduction to enzymes–Definition, enzyme unit, specific activity and turnover number, exo/ endoenzymes, constitutive/ induced enzymes, isozymes. Monomeric, Oligomeric and Multimeric enzymes. Multienzyme complex: pyruvate dehydrogenase; isozyme: lactate dehydrogenase. Ribozymes,	
abzymes	
Structure of enzyme : Apoenzyme and cofactors, prosthetic group-TPP, coenzyme, NAD, metal cofactors.	
Classification of enzymes, Mechanism of action of enzymes: active site, transition state complex and activation energy. Lock and key hypothesis and Induced Fit hypothesis. Multi-substrate reactions -Ordered, Random and Ping-pong.	
Unit -IV	14 Hrs
Enzyme Kinetics and Regulation	
Enzyme Kinetics: Kinetics of one substrate reactions. i. Equilibrium assumptions ii. Steady state	
assumptions iii. Line weaver-Burk, Hanes-Woolf, Eadie-Hofstee equations and plots. Kinetics of	
enzyme inhibition. Competitive, non-competitive and uncompetitive inhibition. Effect of changes	
in pH and temperature on enzyme catalyzed reaction. Kinetics of two substrate reactions. Pre	
steady state kinetics. Kinetics of immobilized enzymes	
Enzyme regulation: Allosteric enzyme - general properties, Hill equation, Koshland Nemethy	
and Filmer model, Monod Wyman and Changeux model. Covalent modification by various	
mechanisms. Regulation by proteolytic cleavage - blood coagulation cascade. Regulation of	
incommission regulation of protoolyte cleavage blood congulation cubedde. Regulation of	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)			F	Prog	ram	o Ou	tcor	nes	(PO	s)		
	1	2	3	4	5	6	7	8	9	10	11	12
Differentiating concepts of chemoheterotrophic		~						✓			✓	
metabolism and chemolithotrophic metabolism												
Describing the enzyme kinetics, enzyme activity and		<						✓			✓	
regulation.												
Differentiating concepts of aerobic and anaerobic		✓						✓			✓	
respiration and how these are manifested in the form of												
different metabolic pathways in microorganisms												

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

native Assessment = 60 Marks			
Formative Assessment Occasion / type	Weightage in Marks		
Attendance	10		
Seminar and Assignment	10		
Debates and Quiz	10		
Test	10		
Total	60 marks + 40 marks = 100 marks		

Cou	rse Title Microbial Enzymology and Metabolism(Practical)				2	
Cou	urse No.	MBL:104	DSC-4P	Contact hours		
			Content			
1.	Estimati	on of total lipid				
2.	Identific	ation of fatty acid	ds and other lipids by TI	.C		
3. Isolation of lactose from bovine milk						
4.	Estimati	on of total sugars	by the phenol-sulphuric	acid method		
5. Estimation of DNA - DPA method & UV absorbance method						
6.		on of RNA (Orci	,			
7.			bsorption coefficient (ϵ)	•		
8.			s/ tannins by Folin- Den	is method		
9.		tration of alcohol				
10.			enzyme activity (amylas	se): a. Temperature b. pH	c. substrate	
	concentr					
	•	ne concentration				
11.			nd Vmax of amylase (Lineweaver-Burke plot; M	ichaelis-	
	Mentone	•				
12.	Identifica	ation of metaboli	c pathways through char	ts (Any 3)		
Ducc	tical asso					
Prac	ucai asso	essment	Assessment			
		Formative as	sessment	Summative Assessment Total Mar		
Ass	essment (Occasion / type	Weightage in Marks			
	Reco	ord	5			
	Te	st	10			
	Attenda	nce	5	25	50	
	Perform	ance	5			

References

Total

- 1. Philipp. G. Manual of Methods for General Bacteriology.
- 2. David T. Plummer. An Introduction to Practical Biochemistry
- 3. Wood W. B. Wilson J.H., Benbow R.M. and Hood L.E. 1981. Biochemistry- A

25

- Problem Approach,2nd edition. The Benjamin/ Cummings Pub.co
- 4. Segel I.R., 2nd edition., 2004, Biochemical calculations, John Wiley and Sons
- 5. Irwin H. Segel, 2nd Edition, Biochemical Calculations, John Wiley & Sons

Date:

Subject Committee Chairperson

25

Program Name	BSc Microbiology Semester		Fourth Semester	
Course Title		Hun	nan Microbiome	
Course Code	MBL:304	OE-4T	No. of Theory Credits	3
Contact hours	Lecture		Duration of ESA/Exam	Hours
Contact nours	Practical			
Formative Asses	ssment Marks	40	Summative Assessment Ma	irks 60
Course Pre-req	uisite(s):			
3. Compare	•		orogy. ent human body sites and impact	
Content Unit–I			42 Hrs	
INTRODUCTION TO MICROBIOME			14 Hrs	
			nicroflora, skin microflora,	
		•	otic and parasitic association.	
Unit -II				14 Hrs
Pre and post-nat metabolichealth Influence of mic Probiotics-Criter	-role of gut micro robiome in aging. ria for probiotics, piotics. Functional	utritional modulation biomes in human obe Development of Prob	of the gut microbiome for esity, human type 2 diabetes. iotics for animal and human and benefits, Development of	
Unit -III			14 Hrs	
Culturing of org and yeast.Study Microbiomes an	anisms of interest of the microbiom nd diseases: Micr	obiome and disease ri		

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative assessment = 40 marks theory paper, End semester Exam duration of exam 2 hours				
Formative Assessment Occasion / type	Weightage in Marks			
Assignment	10			
Seminar	10			
Case studies	10			
Test	10			
Total	40 marks			

References

- 1. Jason A. Tetro, 2016. The Human Microbiome, Handbook DE Stech Publications inc,
- 2. Rebecca E. Hirsch, 2016. The Human Microbiome, Twenty First Century Books.
- 3. Julian R Marchesi, 2019. The Human Microbiota And Microbiome, CABI
- **4.** Alanna Collen, 2016. 10% Human: How Your Body's Microbes Hold the Key to Health and happiness

Date:

Subject Committee Chairperson

National Education Policy (NEP) - 2020 Question paper pattern for B.Sc. Microbiology- Practical Paper University Examination (III and IV Semester)

Time: 2 Hours	Max.Marks: 25
Q.No.1.Conduct the experiment A and report the result	08 Marks
Q.No.2.Conduct the experiment B and report the result	05 Marks
Q.No.3.Identifyand comment on C and D	4 X 2 =08 Marks
Q.No.4.Class record	04 Marks

National Education Policy (NEP) - 2020 Question paper pattern for B.Sc. Microbiology- Practical Paper Internal assessment Examination (III and IV Semester)

Time: 2 Hours	Max. Marks: 25
Q.No.1.Conduct the experiment A and report the result	08Marks
Q.No.2.Conduct the experiment B and report the result	05 Marks
Q.No.3.Identify and comment on C and D	4 X2 =08Marks
Q.No.4.Viva Voce	04 Marks

National Education Policy (NEP) - 2020 Question paper pattern for B.Sc. Microbiology-DSC University Theory examination			
me: 3 hrs	(III and IV Semester)	Max Marks: 60	
	omplete set of questions from eacher of wherever necessary	ch unit	
	UNIT-I	2.5.9.15	
a)		2+5+8=15	
b) c)			
	OR		
a) b)			
c)			
	UNIT-II	2+5+8=15	
a)		2+5+6=15	
b) c)			
a)	OR		
b)			
c)			
	UNIT-III	2+5+8=15	
a)		2+3+0-13	
b) c)			
a)	OR		
b)			
c)	UNIT-IV		
		2+5+8=15	
a) b)			
2)	OR		
a)			
b) c)			

National Education Policy (NEP) - 2020 Question paper pattern for B.Sc. Microbiology-DSC Internal Assessment Theory examination (III and IV Semester)				
Time: 1.30hrs		Max Marks: 30		
NOTE:*Draw diagrams wherever ne	ecessary			
	Part A			
I. Discuss any 5 of the following:		2X 5= 10 Marks		
a.	e.			
b.	f.			
c. d.	g. h.			
u.				
II Answer on 2 successions	Part B	5V2 10 Montra		
II. Answer any 2 questions 1.		5X2=10 Marks		
2				
3 .				
4.				
	Part C			
III. Answer any 1question		10X1=10Marks		
1.				
2				

National Education Policy (NEP) - 2020 Question paper pattern for B.Sc. Microbiology-Open Elective Paper University Theory examination (III and IV Semester)

Time: 3 hrs NOTE:*Draw diagrams wherever r	Max Marks: 60	
I. Discuss any 5 of the following:	Part A	2X 5= 10 Marks
a.	е.	
b.	f.	
с.	g.	
d.	ĥ.	
	Part B	
II. Answer any 4 questions from the following:		5X4=20 Marks

1. 2 3. 4. 5. 6.

Part C III. Answer any 3questions from the following:

10X3=30 Marks

1. (6+4 or 5+5) **2.** (6+4 or 5+5) **3.** (6+4 or 5+5) **4.** (6+4 or 5+5)

National Education Policy (NEP) - 2020 Question paper pattern for B.Sc. Microbiology-Open Elective Paper Internal Assessment Theory examination (III and IV Semester)

Time: 1.30hrs NOTE:*Draw diagrams wherev	er necessary	Max Marks: 30
	Part A	
I. Discuss any 5 of the followin	g:	2X 5= 10 Marks
a.	e.	
b.	f.	
с.	g.	
d.	ĥ.	
Part B II. Answer any 2 questions from the following		5X2=10 Marks
1.	in the following	
2		
- 3.		
4.		

Part C

III. Answer any 1question from the following

1.

10X1=10 Marks